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Abstract   

Many taxicab riders in New York City have no idea how much a ride will cost, and have no choice
but to pay however much it costs after they arrive. Alternatives like Uber exist, but are subject to
surge pricing and require waiting for the driver. We use a decision tree to predict the cost of a taxi
ride, based on attributes like time of day and location, using data from the City of New York
Government's Taxi and Limousine Commission. Such a predictor can be used by riders who wish to
know the cost of a ride when deciding on a mode of transportation.

We settled on the J-48 Decision Tree algorithm, after testing learners like Random Forest, Nearest
Neighbor, and Naive Bayes. Our final model achieved 91.09% accuracy on a designated test set. We
found that trip duration and trip distance were the most significant attributes to predicting fares,
and our model also learned on other attributes like day of week and time of day to fine-tune the
output.
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Problem Statement   

We predict the price of a NYC taxi trip in December 2017, based on several attributes.

Input attributes: pickup/dropoff times and dates, trip distance, pickup/dropoff location as 
predefined zones in NYC, and the number of passengers.
Output: total price, including tolls and fees, excluding tip.

Our task is important because predicting the rate of a NYC taxi trip is a very practical functionality
that can be expanded onto different uses, such as predicting rates for trips in other cities. This task
is similar to popular functions in apps such as Uber and Lyft in estimating prices of trips, and thus
can be valuable data to be integrated in major companies if needed. This task is also important in
helping passengers adjust aspects of their trips in order to find the lowest fare.

Furthermore, riders can use the predicted cost to judge how hard it is to hail a taxi. Since
rideshares, like Uber, serve the same need of point-to-point transportation, the consumer demand
for taxis and rideshares are pretty much the same. If predicted taxi fares are a lot higher than
quoted rideshare fares, all things equal, then free taxis must be in limited supply and harder to
hail, and vice versa. This can also be a factor for riders to consider before deciding on a mode of
transportation.

We chose to focus on December 2017 because that is the most recent dataset provided by the
Commission. The entire dataset is available for rides since 2009, but the entire dataset takes up
close to 100GB of space, which we are ill-equipped to learn on, given our technical expertise.
Instead, we present a method of preprocessing the data such that our model's accuracy is
maximized, and only relevant input attributes are trained on.

Data Processing   

The raw data from the Taxi Commission includes attributes:

Vendor ID, which indicates the taxi company responsible for that trip
Pick-up and drop-off dates and times
Pick-up and drop-off locations, in the form of designated zone IDs on a map of New York
Number of passengers on each trip
Trip distance in miles
“RatecodeID”, which indicates any special rates for specialized routes such as those to and 
from airports
Payment method
Fare subtotal, excluding additional fees and tips
Additional taxes, tolls, and surcharges
Tips, only if the payment method was a credit card



Our training set consists of 10,000 randomly-selected examples of taxi rides in New York in
December 2017. Our testing set also consists of 10,000 randomly-selected taxi rides in New York,
however the examples were selected from different months in 2017 such as September and July in
order to better test the accuracy of our classifier. We had experimented with different sizes for the
datasets, but ultimately chose a size of 10,000 examples. Our results from Figure 1 showed us that
increasing the size of the dataset would not increase the accuracy, but decreasing the size would
decrease the accuracy.

Before training, we changed the raw dataset to suit our needs. We added four additional attributes
that were not a part of the raw dataset. Firstly, we used the pickup date of each example to find the
day of the week that the ride took place. We represented day of the week as a number between 1-
7, where 1 refers to Monday and 7 refers to Sunday. Additionally, we added an ‘IsWeekday?’ binary
attribute, which is 1 when the ride took place on a weekday and 0 otherwise. This helped us
account for the pricing and traffic differences that might take place on work days. Also, we rounded
pickup time to the nearest hour to account for traffic patterns throughout the day. Lastly, we used
the pickup and dropoff times and dates to calculate the durations of the rides.

We also rounded the fares to the nearest five dollars in our training set, so that our model’s output
is nominal. We assume that our model will not need to predict fares outside of the range of fares in
our 10,000 examples.

Our predictor only predicts the fare subtotal excluding fees and taxes, even though the raw dataset
included it. This is because we assume that all additional fees and taxes are not as relevant to our
goal of predicting fares based on all of our other inputs.

In summary, our final list of input attributes to our model are:

Vendor ID (nominal)
Day of Week (nominal)
IsWeekday? (binary)
Hour of Day (nominal)
Duration (numeric)
Passenger Count (nominal)
Trip Distance (numeric)
RatecodeID (nominal)
Pick-up location ID (nominal)
Drop-off location ID (nominal)

Our final output attribute is the fare rounded to the nearest five dollars.

Algorithm   

We chose the decision tree algorithm because we surmised that the fare of the trip depended
more heavily on particular attributes such as the duration of the trip. We ran our datasets through
J48 and Random Forest classifiers. We also tested methods that were not decision trees such as
Naive Bayes, ZeroR, and Nearest Neighbor. These methods did not perform as well as decision



trees due to the nature of our dataset. Instead of using cross-validation, we chose to use a supplied
test set to reduce the chance of overfitting.

See Table 1 for details.

Analysis   

Based on our results from testing different classifiers, we can conclude that the best classifier for
our dataset is a decision tree (J48 in Weka). With this classifier, we were able to obtain an accuracy
of 91.09% using the testing set, compared to the other methods which all produced a lower
accuracy. We also found the duration and trip distance were the most informative attributes. This
was supported by the fact that the decision tree splits on these attributes first. Also, when we take
out these attributes from the dataset, the accuracy plummets. Finally, the accuracy of the classifier
increases logarithmically in proportion to the amount of data points supplied in the dataset as
shown in Figure 1.

Future Plans   

While we managed to achieve a respectable accuracy using decision trees, there are many other
steps we could take in the future to solidify our findings. Although we used pick-up location and
drop-off location as part of our attributes, we did not have a definite understanding of New York's
zones and thus could not estimate traffic activity as an attribute. Additionally, we only procured
data from New York in 2017, so we could try to test the same methods on data from different years
or even cities to see exactly what factors affect the result the most. These steps could further
increase the accuracy and expand the diversity of our examples.
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Appendix   

Table 1   

Various method accuracies for 10,000 data points



No. of data points Classifier Accuracy

10,000 J48 91.09%

10,000 Random Forest 78.28%

10,000 Naive Bayes 62.89%

10,000 Nearest Neighbor 60.01%

10,000 ZeroR 33.36%

Figure 1   

Sample Size's effect on Accuracy
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